Overview

- TimkenSteel
- Design for Center Soundness
- Virtual Process Path
- Large Bar Capability
- Conclusions
TimkenSteel Corporation

- We help customers push the bounds of what’s possible by creating steel products and services to overcome their toughest challenges

- Innovative team of experts driving custom and tailored solutions
 - Institutional expertise developed over 100 years
 - Deep technical knowledge of processes and applications
 - ~30% of our product offerings are less than 5 years old

- A 100-year old start-up
A market leader in a broad range of products and services.
Advanced Steel Technology

- Applications Metallurgical Laboratory
- Advanced Modeling
- Advanced Product & Process Engineering
- Development Labs

- Microscopy
- UT
- Corrosion
- ASPEX
- Dual Beam SEM/FIB
- Modeling Software
- Gleeble
Design for Center Soundness

- Paradigm shift from reduction ratio to measured soundness
 - Why? – Because TimkenSteel has the knowledge & tools to implement
 - Reduction ratio accounts for geometric shape change only
 - How does that tell me what is going on at the center?

- Use virtual process path to assess and predict center soundness

\[
\text{Reduction Ratio} = \frac{A_I}{A_F}
\]
Characteristic of Interest: Soundness

- Goal: Produce large bar (> 9”) sound center product that meets customer specifications

- Soundness ≈ Microporosity
 - Cause → volume shrinkage during solidification
 - Mitigate via
 - Casting process parameters
 - Hot work while converting to bar
 - Important to know where microporosity forms
Virtual Process Path: Casting

- Niyama criterion value accounts for temperature gradient & cooling rate during solidification
- Indicates a risk that porosity or shrinkage may occur

Cross-Section of Ingot in Mold
Virtual Process Path: Hot Work

“Hot work eliminates porosity, but the amount required to produce full density in bars is a function of the method by which the hot work is applied.”

—ASPPRC Publication

1. Two process paths: Rolled & Forged-Rolled

2. With respect to center soundness:

 Forging Reduction ≠ Rolling Reduction

 Overall Deformation = Forging Deformation + Rolling Deformation

3. Hot work has to be simulated, evaluated and combined

Virtual Process Path: Open-Die Forging

Forging Simulation Includes:
- Incoming Workpiece & Die Geometry
- Process Parameters

Tracks key process results that indicate evolution of center soundness
Virtual Process Path: Rolling

- Rolling Simulation Includes:
 - 46” Blooming Mill & 36” Billet Mill
 - Multiple passes through each mill
- Results used to assess soundness and final shape
Virtual Process Path: Validation

- The TimkenSteel Large Bar UT is a mechanical inspection machine
- Utilizes reflection transducers and multi-element phased array probes
- Inspects for both internal and surface indications

Example Forged-Rolled large bar inspection scan
Virtual Process Path: Results

“Hot work eliminates porosity, but the amount required to produce full density in bars is a function of the method by which the hot work is applied.”
– ASPPRC Publication

• Now, with respect to deformation:

\[\text{Overall Deformation Distribution} = \text{Strain} + \text{Other Component} \]

Case Study: Results Validation

- Rolled-only process ultrasonic indication frequency increases in larger bar sizes (remnant porosity).
- Forged-Rolled process ultrasonic indication frequency shows sound center across size range.
Physical Process Path: Trial

- **Trial Details:**
 - Work Piece: Cast blooms
 - Process: Forged-Rolled
 - Sequence: Non-optimized & Optimized
 - Material, initial size and final size all held constant

- Simulations run and post-processed for parameter which tracks center soundness

- Simulated tracking results compared directly to measured UT indications
Physical Process Path: Trial Results

Non-Optimized Process UT Scan [Indications in Red]:

Optimized Process UT Scan [No Indications]:
Forged-Rolled
Expanded Capability

Further Optimization

Ultrasonic Soundness Specification

Minimum Reduction Ratio Required

Rolled
Forged-Rolled
Conclusions

- Using advanced modeling tools, TimkenSteel can bypass the use of reduction ratio and focus on optimizing center soundness.

- The Forged-Rolled process path contains the best of both worlds – center consolidation of forging plus the size control of rolling.

The Forged-Rolled process allows TimkenSteel to produce sound, large bar product at geometric reduction ratios lower than historically possible in rolled-only product.
We help customers push the bounds of what’s possible by creating steel products and services to overcome their toughest challenges.

For more information, visit www.timkensteel.com or call us at 866.284.6536 (USA), +44 1455 826320 (Europe), +52 (55) 5876 9888 (Latin America), +52 (81) 8123-6147 (Mexico) and +86 (21) 60231080 (China). communications@timkensteel.com